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Laser radiation acting on the surface of a solid target in an atmosphere at reduced 
pressure causes a plasma of target vapor to form and expand. It is known that at low pres- 
sures the background gas has little effect on the expansion. The model of expansion of a 
plasma in a vacuum [i-Ii] is a good approximation in this case. The main results here were ob- 
tained by considering a one-dimensional [i, 2, 4-8] or quasi-steady spherical [3, 5, i0, ii] ex- 
pansion. For one-dimensional expansion self-similar solutions have been constructed for a 
completely [2, 4, 5] or partially [5, 8] ionized non-radiating plasma and computer simula- 
tions, taking the re-radiation of the plasma into account, have been carried out [6, 7]. 
For the spherical case the distribution of the plasma parameters is found numerically if the 
parameters at the Jouguet point are given [3, 5, I0]. 

The main results are found from numerical calculations (required even in self-similar 
solutions), which give a fairly detailed picture of the process. The principal character- 
istic features, however, should depend weakly on detailed knowledge of the exact absorption 
coefficients, the equations of state, and the transport equations; they are even more visible 
when the detailed is reduced and the model is simplified, naturally without losing the quali- 
tative features of the process. Such an undetailed model makes it possible to see the main 
tendencies and occupies an intermediate position between numerical calculations and simple 
estimates. Self-similar solutions [2, 4, 5, 8] thus have given a relatively simple picture 
of the space-time distribution of the plasma parameters in one-dimensional expansion for a 
power-law (or constant) laser-radiation intensity. 

It turns out that on the basis of the results of previous studies the examination of the 
expansion of a low-temperature laser plasma in a vacuum can be simplified further, which is 
what we have done here. This has made it possible to write the equation of one-dimensional 
expansion for any time dependence of the laser~radiation intensity, find its partial solu- 
tions, study the self-radiation of the plasma on the expansion, use the model of a two-dimen- 
sional expansion to estimate the time in which the self-consistent mode of expansion (plasma 
transillumination) is violated in the transition from the one-dimensional to the two-dimen- 
sional stage, and obtain approximate expressions for the time distribution of the plasma 
during the spherical or cylindrical stage of expansion. The model extends the class of prob- 
lems encompassed by the analytical approach and can be used for the analytical investigation 
of other physical processes that accompany expansion: the study of a plasma, generation of 
electric and magnetic fields, interaction of a plasma with a background gas, etc. 

i. Main Models. Equation of One-dimensional Expansion. The assumptions determining 
the model are based on the approximation of average charge for plasma ions [12] and generally 
concur with the assumptions of [8]. In this case only the external hot zone of the plasma, 
and not the internal heating zone, is considered. 

Assume that there is a flat target in a vacuum. Laser radiation is incident on it along a nor- 
mal and is absorbed by the expanding ablation plasma. If the expansion of heating times of the 
plasma exceed the characteristic ionization and recombination times, the ionization state 
is an equilibrium state. In such a plasma the charge distribution of the ions is in the form 
of a narrow sharp peak, mainly ions with one to three charges exist, which makes it possible 
to introduce an average ion charge (degree of ionization), which is assumed to be a continu- 
ous quantity [12, 8]: Z = ne/n (n e and n are the electron and ion densities). One more sim- 
plification is associated with the replacement of the real dependence of the ionization po- 
tential I(Z) by a power-law approximation [12, 8]: I(Z) = IzZ ~. The values of ~ for some 
elements, calculated for I(Z) ~ 100-300 eV, are given in Table i. From the Saha equation of 
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TABLE 1 

Material 

Carbon 1,2 
Aluminum 1,7 
Chromium 1,4 
Iron t ,34 
Copper i ,45 
Silver t,4 
Lead 1,3 

ionization equilibrium it follows [12, 8] that I(Z) = ST (T is the plasma temperature which 
is identical for electrons and ions, and 8 depends logarithmically on the plasma parameters 
and is assumed to be approximately constant). 

The self-similar solutions were constructed [2, 4, 8] by using the linear dependence 
v(x, t) of the plasma velocity on the coordinate x [13] with v(0, t) ~ 0. In most of the 
volume, however v(x, t) ~ v(0, t) and it is more appropriate to take 

v (x, t) = (x /~)dx] /d t  ( i .  1) 

[ x f ( t )  i s  t h e  c o o r d i n a t e  o f  t h e  p l a sma-vacuum b o u n d a r y ] .  The l a s e r  r a d i a t i o n  a b s o r p t i o n  
c o e f f i c i e n t  d e c r e a s e s  r a p i d l y  w i t h  i n c r e a s i n g  x.  We can assume,  t h e r e f o r e ,  t h a t  l a s e r  r a d i a -  
t i o n  i s  a b s o r b e d  p r i m a r i l y  n e a r  x = 0 and i n s t e a d  o f  t h e  e q u a t i o n  o f  l o c a l  p lasma h e a t i n g  
[2 ,  4,  8] we can  u s e  t h e  a p p r o x i m a t i o n  o f  a d i a b a t i c  e x p a n s i o n  in  t h e  fo rm [12] 

(T3/2/n) exp (?Z) = const. ( 1 . 2 )  

S u b s t i t u t i o n  o f  ( 1 . 1 )  and ( 1 . 2 )  i n t o  t h e  e q u a t i o n  o f  m o t i o n  w i t h  r e p l a c e m e n t  o f  Z + 1 by Z 
a t  h i g h  Z [8]  g i v e s  t h e  d i s t r i b u t i o n  o f  p la sma  p a r a m e t e r s  in  t h e  o n e - d i m e n s i o n a l  s t a g e  o f  
e x p a n s i o n :  

z ( L  t) = z ~ ( t )  ( l  - ~)~/(~+2>, 
T ( L  t) = r ~ ( t )  (i - ~)~/(~+~), ( 1 . 3 )  

n(~, t) = n~(t)(l  - -  ~2)i.~/(~+2) exp {?Z~[(I - -  ~2)i/(~+2) _ t]},  

= x/x i  

[to obtain (1.3) it is sufficient that the entropy s depend weakly on the coordinate: ydZ/ 
dx ~ ds/dx]. The maximum parameters Zm(t), Tm(t), and nm(t) with respect to coordinate are 
obtained at $ = 0, taken to be the boundary of the inner and outer zones of the plasma: 

Z~  (t) = ( m ? ~ * I ~ i d 2 x ] / d t ~ ) ,  T~  (t) = I~Z~ (t), ?~ = 27/(a + 2), ( i .  4)  

I~ = I~/~ 

(m i s  t h e  i on  m a s s ) .  The d e n s i t y  n m ( t )  i s  found  f rom t h e  c o n d i t i o n  f o r  a s e l f - c o n s i s t e n t  
e x p a n s i o n  mode (SCEM) [1 ,  2,  4] i n  which  t h e  o p t i c a l  t h i c k n e s s  o f  t h e  p lasma f o r  l a s e r  r a d i a -  
t i o n  i s  8s = c o n s t  and i s  o f  t h e  o r d e r  o f  one .  The a b s o r p t i o n  c o e f f i c i e n t  o f  l a s e r  r a d i a t i o n  
o f  f r e q u e n c y  ~s in  a r a r e f i e d  p l a sma ,  where  n e i s  much s m a l l e r  t h a n  t h e  c r i t i c a l  d e n s i t y  f o r  
c u t o f f  o f  l a s e r  r a d i a t i o n ,  w i t h  a l l o w a n c e  f o r  t h e  p h o t o e f f e c t  and s t i m u l a t e d  e m i s s i o n  a t  
hvs ~ T has  t h e  fo rm [12]  

• = •  ~, • = 25/23-3/2~1/2e~m[~c-1. ( 1 . 5 )  

By means of (1.5), after approximate integration over x with allowance for the fact that the 
region near x = 0 makes the main contribution, we find from the SCEM condition that 

(47a/g) ~tOl (Xlx / ) - I /2T~aZ~ 5/a. ( 1 . 6 )  n~( t )  = 1/4 1~ 

The p lasma p a r a m e t e r s  ( 1 . 6 )  and ( 1 . 6 )  depend o n l y  on x f ( t ) .  The e q u a t i o n  f o r  x f ( t )  i s  
o b t a i n e d  f rom t h e  law o f  c o n s e r v a t i o n  o f  e n e r g y  E l ( t )  + E 2 ( t )  + E 3 ( t )  = Ws - W r ( t )  (E 1, 

E 2 ,  E 3 a r e ,  r e s p e c t i v e l y ,  t h e  k i n e t i c  e n e r g y  o f  e x p a n s i o n ,  t h e  t h e r m a l  e n e r g y ,  and t h e  e n e r g y  
o f  i o n i z a t i o n  o f  an atom t o  a Z i on  p e r  u n i t  t a r g e t  s u r f a c e  a r e a ,  W~(t)  i s  t h e  d e n s i t y  o f  
t h e  l a s e r  r a d i a t i o n  e n e r g y ,  and W r ( t )  i s  t h e  p lasma  r a d i a t i o n  l o s s ) .  A p p r o x i m a t e  i n t e g r a t i o n  
over x gives 

mN s 
[ Z 1+~ 3 

" ( 1 . 7 )  
E l =  2 ~ g m  \ d r /  ' E2 = -~ m N 

[ ~ \a12 
Ns = - -  xlnm I 2Y~Zm ) 



[Ns(t) is the number of plasma atoms evaporating per unit area of the target]. The energy 
expended on evaporation of the surface can be disregarded. The equation of expansion is 
then written as 

x~/2 /`lx] _~"~.~ ld2XI~(7~'-3)/(4(z+8) ] + ~2 + ~~j(dxt/dt)2 ] b(WL__ Wr) ' 

(1o8) 
b = 2 (•l/0g) 1/2 ('~8~--l.I~17mS--7(z)1/(4~ 

When t h e  l a s e r  r a d i a t i o n  i s  o b l i q u e l y  i n c i d e n t  a t  an a n g l e  ~ t o  t h e  n o r m a l  t o  t h e  t a r g e t  
8s mus t  be  r e p l a c e d  by Oz cos ~ in  t h e  f o r m u l a s .  

Thus ,  i n  c o n s t r u c t i n g  t h e  model  i n s t e a d  o f  t h e  e q u a t i o n s  o f  c o n t i n u i t y ,  e n e r g y  and  l o c a l  
a b s o r p t i o n  o f  l a s e r  r a d i a t i o n  [2 ,  4,  8,  11] we u s e d  t h e  SCEM c o n d i t i o n ,  t h e  e q u a t i o n  o f  t o t a l  
e n e r g y  b a l a n c e ,  and t h e  a d i a b a t i c  e q u a t i o n ,  wh ich  s i m p l i f i e d  t h e  d i s c u s s i o n  s u b s t a n t i a l l y .  
The SCEM c o n d i t i o n  made i t  p o s s i b l e ,  w i t h  t h e  e x p a n s i o n  v e l o c i t y  d i s t r i b u t i o n  ( 1 . 1 ) ,  t o  ob -  
t a i n  t h e  t i m e - d e p e n d e n t  number  o f  a toms  N s ( t ) ,  t o  wh ich  i s  r e l a t e d  t h e  f l u x  o f  a toms  i n t o  
t h e  o u t e r  zone  o f  t h e  p l a s m a  w i t h  v e l o c i t y  v n ( t )  = nmZdNs/d t .  I t  s h o u l d  be  s m a l l e r  t h a n  
v ( x ,  t ) ,  wh ich  l e a d s  t o  t h e  l i m i t a t i o n  ~ > ~v = V n / ( d x f / d t ) "  With  t h e  c o n d i t i o n  Z ( x ,  t )  > 1 
we h a v e  T > T~ - 1 eV and t o g e t h e r  w i t h  ( 1 . 3 )  we h a v e  ~2 < ~ = 1 - Zm a -2  

2. T w o - d i m e n s i o n a l  E x p a n s i o n .  The e q u a t i o n  o f  t w o - d i m e n s i o n a l  e x p a n s i o n  ( 1 . 8 )  makes  i t  
p o s s i b l e  t o  f i n d  a n a l y t i c a l  ( e x a c t  o r  a p p r o x i m a t e )  s o l u t i o n s  in  c e r t a i n  s p e c i f i c  c a s e s .  Some 
o f  them a r e  g i v e n  b e l o w .  An e x a c t  s o l u t i o n  i s  o b t a i n e d  f o r  W r = 0,  W~ = W~t6/x ~ [Wx = W~(x) 
and x is the laser pulse length]. We call it the 8 solution 

t ( bW t ~<z~+4)/(8~-i) 
x~ (t) = (d ~ + d)(~_~)/(~o~_~) ~, ~ - ~ /  

Zm(t) =[ m(~ + d) x~ ] ~ (2.1) 

d (a ~- 2) (26-- t) 3 2 d @ 1 
8 ~ - 1  , a = ~  +--+-T + [3--g-' 

n m ( t ) ,  T m ( t ) ,  and N s ( t )  a r e  f o u n d  f r o m  ( 1 . 4 ) ,  ( 1 . 6 ) ,  and ( 1 . 7 ) .  C o m p a r i s o n  o f  t h e  s o l u t i o n  
f o r  t h e  e x p a n s i o n  o f  t h e  a luminum p l a s m a  a t  6 = i ,  ~ = 9 w i t h  t h e  known s o l u t i o n  [5]  i n d i c a t e s  
good agreement to within 20-30%. 

Equation (1.8) is solved approximately for W r << Ws ~ t 6, if we write 

x/(t) = xl6(t)[t + 9(t)], p << ~, ( 2 . 2 )  

where  t h e  s u p e r s c r i p t  6 d e n o t e s  t h e  6 s o l u t i o n  ( 2 . 1 ) .  L i n e a r i z a t i o n  o f  Eq. ( 1 . 8 )  w i t h  r e -  
s p e c t  to p leads to 

p(t) = --ff~/[AgW(t)], Ag = A~ + A2g q- Aa(g ~ ' -  g), ( 2 . 3 )  
8a -- ~ 7(z - -  3 2 A~ = 7o: - -  3 t 

A~ = 2 ~ '  A2 = 2d (ct@ 2) a~d z' 4d (ct -]- 2) (d -t- t) a~Jd e 

[g is the exponent in p(t) ~ tg, which is determined by the form of the thermal radiation of 
the plasma taken into account]. The plasma parameters linearized with respect to p have the 
form 

dXfdt - dx!6[dt i-~- (1+a~_ ) ]9, Z~(t)=Zm~(I  + A~p), 

Tin(t) = Tm6(t @ aA~9), nm(t) = n,~611 - -  (1 - -  (3a - -  5)AJ2)9/2], ( 2 . 4 )  

N~(t) = N ~ [ I  @ (1 @ (3a -- 7)AJ2)p/2], 
Az--= [2 -I- 2g/d @ (g2 _ g)/(d3 @ d)]/(a @ 2). 

Let us estimate the intensity of the plasma radiation in the continuous and linear parts 
of the spectrum. In the continuous spectrum the maximum intensity is reached at frequencies 
hv << 3T m. The absorption coefficient decreases with increasing v. Accordingly, while the 
optical thickness of the plasma is of the order of one at the frequency of the laser radiation, 
at v > 99. the plasma is transparent to radiation and at hv Z << 3T m the loss for radiation of 
the continuous spectrum can be considered to be a volume loss. The formula for the energy 
loss per unit volume of plasma fr is given in [12, 14]: 

1~ = a~Zan2rl! ~, a,. = 8r~x~(t + u)/hc~ ( 2 . 5 )  



[u = E4/T = 6/4 for a hydrogen-like atom in which the energy of the first excited level is 
E~ = l(Z)/4]. Integration of (2.5) over the volume of the plasma with allowance for (1.3) 
gives the approximate intensity of the continuous radiation 

t 

2 2 dt. 
o 

The line radiation is absorbed resonantly and has a large absorption coefficient. We 
can assume, therefore, that the plasma radiates as a black body with intensity 

q~ = 2okdT~, W~d = ~ q~d (0 dt, 
0 

where o is the Stefan-Boltzman constant; k d is the average fraction over the spectrum occu- 
pied by lines. In a dense plasma the lines are broadened by the Stark effect. The width of 
the k-th level of the hydrogen-like atom is estimated as [ 14] Z~ek = 3~2n2/3k (k- l)/me The maximum 
number of levels which can still be considered discrete is found from the condition that Ae k 
be equal to the distance between neighboring levels. This gives the estimate 

kd ~ [ t~~ m~- l1-1 (Z)] 1/5. 

I f  i n  Eq.  ( 2 . 3 )  W r i s  t a k e n  f o r  t h e  u n p e r t u r b e d  p l a s m a  p a r a m e t e r s  ( 2 . 1 ) ,  t h e n  g = gc  
i s  o b t a i n e d  f o r  c o n t i n u o u s  r a d i a t i o n  and  g = gd f o r  l i n e  r a d i a t i o n ,  w h e r e  gc  = (6 + 4~ - 1 ) /  
(8a - I) = I/2; gd = [(8a + 1)8 - i]/(8~ - i) z 8. 

For calculations it is convenient to use practical units of measurement: x, cm; t, osec; 
energy, J; velocity, cm/~sec; W, J/cm 2, q, MW/cm2; n, i0 Is cm-3; Tm, I(Z) and laser radiation 
quantum energy, cs = hvs eV. In these units Eq. (1.8) maintains its form with b replaced by 

bp = t0 [?~r 8~-1 ('t, 6I~)'-~' (1,67A)3-7~]l/(4~+s)/(~e,OI/2) 

(h is the atomic weight of the target material). The plasma parameters (1.4), (1.6), and 
(1.7) are written as 

Zm (t) = (Ay~I-~xfl%fdt2)~,'(~+2), Tm (t) = I~Z~, 

r ~ .  , 1 / 4 r ~ l / 2 T 3 / 4 , 7 ( 3 ~ - - 5 ) / 4 ~ - - l / 2  2 7e,"-1/~01/2I ~1~'(~-7)/~ 1/'~ 

t h e  5 s o l u t i o n  ( 2 . 1 )  t r a n s f o r m s  t o  

x] (t) = ~;i/~t {[i,67A (d ~ + d)] ~-~= (iOWzsF~-~a-~t-l/~O-[~/~) ~=+s (~,6I~)-~1 ~/(~=-~), ( 2 . 6 )  

Zm(t)= [ A ll/(c~+2)[b~(d:+__d)W~]'/(sa-1) 

The i n t e n s i t y  of  the plasma r a d i a t i o n  i s  
2 2 q,~ = 0,2ezTm, q~ = 0,2kJ~ ,  

_ r2  0,a d) w t 1, 
- j �9 

kd = n2/151-1/5 (Z)/6. 

3. Two-dimensional Expansion~ Round Radiation Spot. In [3, 5, i0] Nemchinov used the 
assumption, derived from general principles, that when plasma moves away from the target to 
a distance exceeding the size of the laser radiation spot, its expansion becomes spherical and 
the plasma parameters correspond to the end of the two-dimensional stage of expansion. We 
consider an approximate model of axisymmetric expansion to more fully substantiate the pos- 
sibility of such a transition to a model of spherical expansion for the round laser radiation 
spot and to estimate the plasma transillumination time. We introduce r, the distance from 
the axis of the laser radiation. The adiabatic equation (1.2) and the linear distribution 
of the velocity with respect to x (i.I) and with respect to r: Vr(r, t) = (r/rf)drf/dt (rf 
is the coordinate of the plasma boundary at x = 0). From the equation of motion and the re- 
quirement that the distribution Zm(x, r, t) so determined be compatible we find that the 
plasma boundary has the shape of a half-ellipsoid of rotation with semiaxes xf and rf, which 
are related by 

xfl2x/dt  ~ = r 1 ~ / d t  2, 

and the spatial distribution of the plasma parameters has the form (1.3) with 1 - $2 replaced 
by 1 - $2 _ $~ ($r = r/rf). Formulas (1.4) and (1.6) also remain valid. 

The condition for SCEM clearly is not satisfied over the entire laser-radiation spot of 
radius rs but a requirement that it be satisfied on the axis of the laser radiation is 



introduced. The model, therefore, is exact only for rf ~ r~, when the plasma parmneters are 
almost constant along the radius inside the spot. In view of the above-mentioned method- 
ological nature of the model this approximation is not fundamental. The equation of expansion 
is determined from the energy balance 

( (dx]/dt)2~2(drl/dt)2 l 
.j~j z~-~/  L ~ + ~ ~jd~xl/dt~ (3.1) 

(.  12a+31--21m~--7a~1/(4a+s) bl = (nl/Ol)ll2~--ln--ll4v71 k g= ~ ] �9 

I n  t h e  t w o - d i m e n s i o n a l  s t a g e  o f  e x p a n s i o n ,  when x f  ~ r~ ,  f o r  W r = 0 we have  a 6 s o l u -  
t i o n ,  similar to (2.1): 

7~/rl = I -{- (x] /r l )~(4d + 2). 

When xf = r~ we find that rf exceeds r~ by no more than 20-40% if 5 = 1-3 and ~ = 1.2-1.7. In 
the two-dimensional stage, therefore, the plasma moves mainly along the laser beam, xf = r~ 
can be assumed to be the boundary of the two-dimensional stage, and the spherical expansion 
approximation can be used when xf > r~ [3, 5, i0]. 

Analysis showed that the expansion velocity of the plasma boundary grows very slowly 
in the spherical stage and can be assumed to be a constant, corresponding to the end of the 
two-dimensional stage. Then from the solution of Eq. (3.1) it follows that the number of 
atoms in the plasma, N(t) and dN/dt increase rapidly with time. This means that a time t c 
should be reached when the laser radiation intensity is insufficient to evaporate such a 
large number of atoms. This indicates violation of the SCEM and supports the results of 
[3, 9] about the transillumination of the plasma upon transition to the two-dimensional stage 
of expansion. The time t c is estimated from the condition ~r~qz• = sflN/dt, where Ss :is the 
binding energy of an atom on the surface, • is the coefficient of absorption of laser radia- 
tion by the surface, 

t~/tl = exp {7(a --  t)01/[3~ + i7 - -  (11 - -  3a)6]} ( 3 . 2 )  

[ t~  i s  t h e  t i m e  when t h e  t w o - d i m e n s i o n a l  s t a g e  o f  e x p a n s i o n  e n d s ,  x f ( t s  = r ~ ] .  I n  t h e  c a s e  
0~ = 0 .3  f o r  t w o - d i m e n s i o n a l  e x p a n s i o n  w i t h  6 = 1 [2 ,  4,  8] a t  a = 1 . 2 - 1 . 7  we o b t a i n  t c / t  ~ = 
1 . 0 3 - 1 . 1 .  As 5 i n c r e a s e s  t c / t  ~ i n c r e a s e s  b e c a u s e  o f  t h e  i n c r e a s e  in  0~ [ 8 ] ,  bu t  r ema ins  o f  
t h e  o r d e r  o f  one .  The SCEM i s  v i o l a t e d  and t h e  p l a sma  i s  t r a n s i l l u m i n a t e d ,  t h e r e f o r e ,  a l m o s t  
i m m e d i a t e l y  a f t e r  t h e  t r a n s i t i o n  t o  t h e  s p h e r i c a l  s t a g e .  I n  t h e  p r o c e s s  t h e  l a s e r  r a d i a t i o n  
r e a c h e s  t h e  t a r g e t  s u r f a c e ,  where  i t  e v a p o r a t e s  a new p o r t i o n  o f  m a t e r i a l ,  which  h e a t s  up,  
i s  i o n i z e d ,  and g r a d u a l l y  c a t c h e s  up t o  t h e  p o r t i o n  e v a p o r a t e d  p r e v i o u s l y .  An o s c i l l a t o r y  
mode w i t h  p e r i o d  ~t  c ~ t~  a r i s e s .  These  o s c i l l a t i o n s  s h o u l d  be most  p r o n o u n c e d  f o r  t h e  
d e n s i t y  and l e s s  f o r  t h e  t e m p e r a t u r e .  Such a mode was o b s e r v e d  in  t h e  c o m p u t e r  s i m u l a t i o n s  
of Bergel'son, as communicated in [5]. The oscillations can be recorded experimentally if 
the electrical potential of the target is measured. 

With time the oscillations should be damped and a model of quasi-steady spherically 
symmetric expansion should be established [3, 5, i0, ii]. This stage is characterized by 
the presence of a dense laser-radiation absorbing plasma core, a distance r~ from the target, 
and peripheral layers that are transparent to the laser radiation. It is reasonable to assume 
that not all parameters of the plasma core correspond to the end of the two-dimensional stage, 
but only the temperature and velocity do, since they are least subject to change under transi- 
tion to spherical expansion. At 6 = i and W~ = q~t formula (2.6) gives (in practical units) 

[ A (d 2 + d)rl]ll(u+2) 
= ( t O  = = ( t O  = L 

VI d x l ( t = t l )  ( d ~  ~)rl ( 3 . 3 )  
dt t l ' 

( / r  2 \s~--l/O1/2a~ 8 \4a+s ~1/(18a+2) 

The d e n s i t y  a t  t h e  c o r e  b o u n d a r y  r = r~ can  be c o n v e n i e n t l y  d e t e r m i n e d  by u s i n g  t h e  c o n d i t i o n  
2 

t h a t  t h e  l a s e r - r a d i a t i o n  e n e r g y  f l u x  ~r~d~ be e q u a l  t o  t h e  p l a sma  e n e r g y  f l u x  f rom t h e  c o r e ,  
which gives (in practical units) 

n (rz) = tOqtV7 ~ {i,6 [3/~ + ~ (a  + t)] IaZ~ +~ + L67AV~} -~. ( 3 . 4 )  

After a plasma layer leaves the core, its expansion velocity increases slightly with the dis- 
tance (logarithmically) and can be assumed to be equal to V~. If the laser radiation intensity 



varies rather slowly with time, so that the plasma flow manages to build up, then 

n (r, t) = n (rz) r~/r  2, Z (r, t) = Zt  - -  2? -1 In (~r~). 

I n  o r d e r  t o  t a k e  t h e  r a d i a t i o n  e n e r g y  l o s s  i n t o  a c c o u n t  i t  i s  n e c e s s a r y  t o  i n t r o d u c e  
qr  = dWr/dt  and r e p l a c e  q~ w i t h  qE - q r  in  ( 3 . 3 )  and ( 3 . 4 ) ,  t h e  r e s u l t  b e i n g  a l g e b r a i c  equa-  
t i o n s  f o r  t h e  p l a sma  p a r a m e t e r s  w i t h  a known e n e r g y  l o s s  q r  on them. For  example ,  i f  t h e  
main c o n t r i b u t i o n  comes f rom l i n e  r a d i a t i o n  and t h e  s u r f a c e  o f  t h e  p lasma  c o r e  can be t a k e n  
t o  be t h e  r a d i a t i n g  s u r f a c e  ( t h i s  h o l d s  a t  r~ ~ 0 .1  cm in  c o n t r a s t  t o  t h e  q u a s i - v o l u m e  l o s s  
[10] a t  r~ ~ 0 .03  cm), t h e n  i n  p r a c t i c a l  u n i t s  q rd  = 0 " 0 6 n 2 / Z S ( r ~ ) T ~ / s -  The s u b s t i t u t i o n  o f  

9 / ~  2 q - q rd  i n t o  ( 3 . 3 )  and t h e  s u b s t i t u t i o n s  9a + 1 = 9~, T~ = T~ l e a d  t o  

r~ ( ~  + ~ )~ /~-"  ~ ' ~ ' ~  ~ . . . .  .~1/~ 0,~3~/~(~) 
= D , B = [1,67A (d ~ + d) r l ] l /2 '  D = T~I5 ~ const. 

4. Radiation Spot Elongated in One Direction. Suppose that the width of such a spot is 
ys The model of a two-dimensional expansion is built as in Sec. 3. If the plasma boundary 
is at a distance xf < ys from the target, the model of two-dimensional expansion is applicable. 
At xf > ys cylindrical expansion occurs, in which the plasma is transilluminated at the time 
t~/t~= exp {(7~--5)0j[ll--~--g(g--a)6]}. This occurs later than in the case of spherical 
expansion (3.2) because of the weaker effect of the lateral flow of the plasma. At 5 = 1 • 
(8~ = 0.3) and = = 1.2-1.7 we obtain tc/t ~ = 1.3-1.4. Transillumination of the plasma should, 
as in the case of spherical expansion, result inoscillations of the plasma parameters. But 
they should be less distinct and should have a longer period than that for a round laser-radia- 
tion spot of the same size. The parameters of the plasma core are determined by (3.3) and 
the density differs slightly from (3.49: n(ys z 1.3n(rs For the peripheral layers we have 
the distribution 

n(r ,  t) = n (y l )yz / r ,  Z(r ,  t) = Z l - - y - 1 1 n  (r/yl). 

The energy loss for plasma radiation is taken into account, as in Point 3, by replacing q~ 

by qs - qr" 

5. Second Version of the Model. One more version of the model can be constructed if 
an adiabatic equation different from (1.2) is used. To define it we write the specific in- 
ternal energy of the plasma in the form e = l~ZZ+a[3/2 + 6/(1 + ~)]/m and we find the heat 
capacities at constant volume c v or constant pressure Cp. They are proportional to Z, but 
their ratio remains constant: 

?~ = cv /cv  = [5(1 + a) + 281/[3(1 + a) + 28]. 

Although an ionizable plasma is not an ideal gas in the classical sense, many expressions for 
an ideal gas do hold. Thus, 

_ ?a--1 
T = cons~ 9 , e = P/((ya - -  t )  p), W = YaP/((ya - -  1) P) ( 5 . 1 )  

(w i s  t h e  s p e c i f i c  e n t h a l p y  and p i s  t h e  d e n s i t y ) .  The e x p r e s s i o n  p ~.~O (ava+?a-1)/u however ,  

does  d i f f e r  f rom t h e  u s u a l  e x p r e s s i o n  p ~ pYa, a l t h o u g h  n o t  by much, w h i l e  e ~ p  (=+1)(v~-1)/~ 

does  d i f f e r  s u b s t a n t i a l l y  f rom e ~ p Ya-1 The u se  o f  ( 5 . 1 )  i n s t e a d  o f  ( 1 . 2 ) ,  a f t e r  some 
s i m p l i f i c a t i o n s  o f  t h e  c o e f f i c i e n t s ,  l e a d s  t o  t h e  s p a c e - t i m e  d i s t r i b u t i o n  

z (~, t) = z ~  (t) (1 - ~)~/(~+~),  n (~, t) = n ~  (t) (1 - -  ~)vb/ (~+~) ,  ~b = ~ / ( V ~ -  1), 

(~x]d2x]~ 1/(~1) ( ~ ) 1 / 4  , , 3 / 4 f l 1 / 2  
z ~  (t) = \~-~r~ j ) ~ (t) = ~'~ "~ [~  ~ ~1/273(2--~)/4 " 

The e q u a t i o n  o f  a t w o - d i m e n s i o n a l  e x p a n s i o n  i s  w r i t t e n  as  

x/~ ( d%~c~-~)I(~§ 3 t (d~j,'dO~ ] 
(5 .2 )  

b~ = (~,/e~) ~ ( v ~ - ~ I ~ - : ~ ) l J ( ~ = + ~ ) / ( ~ / ~ )  

Then ( 5 . 2 )  i s i s o l v e d  i n  much t h e  same way as  in  Sec .  2. The s o l u t i o n  does  n o t  d i f f e r  m a r k e d l y  
( tO w i t h i n  t h e  a c c u r a c y  o f  t h e  mode l )  f rom f o r m u l a s  ( 2 . 1 ) - ( 2 . 4 ) .  The d i s c u s s i o n  f o r  two-  
d i m e n s i o n a l  e x p a n s i o n  v i r t u a l l y  a g r e e s  w i t h  t h a t  i n  S e c s .  3 and 4. 



In summary, the proposed theoretical model makes it possible to find simple expressions 
for the parameters of a laser plasma expanding in a vacuum over a wide range of parameters of 
the laser radiation and the target material. 
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